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ABSTRACT 

A simple theoreticai model is proposed to describe the flow of a turbulent wall jet 

along a curved surface into a quisecent atmosphere. An integral method is used to solve 

the momentum equation and identifies three contributions to the spreading rate of the wall 

jet: (1) turbulent diffusion in the wall jet, (2) wall  curvature and (3) rate of change of 

wall curvature. Closed from approximate solutions are found for the case of a plane wall, a 

circular cylinder and a logarithmic spiral surface and comparison with experimental data 

for these three cases is made showing good agreement between theory and experiment. 
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Introduction 

The behavior of a wall jet flowing around a curved surface has been the subject of 

study for almost two hundred years following the Er3t observations of Young@) in 1800. 

Practical application of this phenomena, popularly known as the Coanda effect, have been 

pursued in more recent times with a view to delaying separation of the boundary layer on 

lifting surfaces by using a wall jet over a rounded trailing edge: the wall jet causes the 

flow to remain attached to the surface, displaces the rear stagnation point and induces 

additional circulation, and therefore produces additional lift on the surface. The use of 

this phenomena in the design of circulation control wings (CCW) has received considerable 

attention in recent years and has been described by a number of investigators (see for 

example Wood(*) and Englar(')). 

Despite the fact that the phenomena is being used in practical applications to wing and 

rotor design the understanding of the properties of wall jets is still limited and depends 

primarily in experimental information regarding the turbulent mixing, its effect on the 

spreading rate of the wail jet and the corresponding deceleration of the flow as it proceeds 

along the wall. A thorough review was made by Launder and Rodi(') in I981 of available 

data for wall jets adjacent to surfaces of plane, cylinder and logarithmic spiral surfaces 

and substantial use may be made of this information to distinguish the influence of wall 

curvature, and rate of change of curvature in the stream direction, on the spreading rate 

of the jet. This information together with data from the same review on the mean velocity 

profile in the wall jet provides the basis for checking theoretical models of the flow. 

In the present paper an attempt is made to formulate the simplest possibie model for 

the flow of a wall jet emanating from a two dimensional source into quiescent surroundings 

in the presence of a wall of arbitrxry shape. The method uses self similar profiles for the 

mean velocity together with a simpie eddy viscosity model. The streamwise and radial 

momentum equations are integrated across the wall jet flow to give an expression for the 
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momentum balance including the effect of the pressure gradient induced by the rate of 

change of surface curvature. The streamwise momentum equation is also evaluated at the 

point of maximum velocity to provide a second equation and thereby permit a solution 

for the two unknown quantities b, the jet half width and urn, the maximum velocity. 

This approach provides approximate dosed form solutions for the flow of the wall jet over 

surfaces of various shapes (for quiescent surroundings), and in particular permits a direct 

comparison with the available experimental results for plane, cylindrical or logarithmic 

spiral surfaces. 

The wall jet is considerzd to comprise two parts: an inner flow adjacent to the wall 

having a highly non-linear velocity profile characteristic of a turbulent wall flow, and an 

outer flow having a velocity profile more typical of a free turbulent plane jet. 

The primary parameten that describe the flow are shown in figure I .  The jet emerges 

from a point source into a fluid at rest and spreads, increasing its width and decreasing 

its velocity due to turbulent diffusion in the jet and friction at the wall. At a distance s 

downstream of the jet exit the velocity to can be expressed as 

where urn is the maximum velocity, occurring at y = ym(s) , and 6 = b(s)  is the half 

width of the jet (at which point u = ;urn)- 

The velocity profile in the outer flow (y > ym) is assumed to take the form: 

u = urn aech' 
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where [ = y/b. This velocity profile is suggested by the classical free jet solution found 

by Tollmien, modified to give u = u, at E = &,,. The constant k is determined such that 

u = pm at 6 = l(y = b ) ,  thus 1 

A: = tanh-' (5) = .8814 

The velocity profiie for the inner flow is assumed to  depend on the variable ((/(m)' 

as suggested by turbulent wall flow, and is chosen to give a maximum value 1~ = u, at 

6 = tm: the following profile satisfies these conditions 

P 2 

u=u, b(;)n - ( f ) n ]  14) 

The value &,,, giving the location of maximum velocity, is determined by matching 

the second derivative of the velocity profiles as given by equations (2) 2nd (41, (the first 

derivative is zero since this is the maximum velocity point). 

The result is written 

f* = (1 + kn)-' ( 5 )  

Before proceeding with the analysis, a comparison is made in figure 2 of the velocity 

profiles with the experimental data of TailIand(5)(6). The data are typical of those taken 

by a number of authors for wall jet flows over plane and curved surfaces and show that 

the assumed profile given by equations (2) and (4) is reasonable. Additionally in figure 3 

a comparison is made of &,, given by equation ( 5 ) ,  with the experimentally determined 

values given by Forthmann('), Sigallac*) Bradshaw dt Gill('), Patel(") and Giled"). All the 

data fa& within a band .14 < t m  < .I6 corresponding to 7 > n > 6 for Reynolds number 
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R, in the range lo' to lo5; thus the values of n are consistent with those expected for 

turbulent wall flows. 

In this paper the two primary flow variables to be determined are the jet half width, 

b, and the maximum velocity u,. The continuity and momentum equations for an incom- 

pressible fluid are written 

--hap a a U  a 
as a Y  P as  a Y  

+ -( h2?) hu- + hv-(hu) = -- 

and 

u2 1 a p  
R P ay 
- = -h- 

where 

h = l + y / R  

Equations (6) to (8) can be combined to give 

-(u2) a + -- u2ydR = -(h27 a - h2UV - - a (--)) PY 
as  R2 ds a y  as 

neglecting terms of 0 (&). Integration across the flow gives the integral f o m  of the 

momentum equation: 
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This equation retains the term which reflects the curvatureinduced pressure gradient 

which may be large compared with ro/p, the wall  shear stress. 

Substitution of the velocity profiles (equations 2 and 4) into the integrals of equation 

(10) gives 

where 

A, = (1 + -n)( 2 1 + h ) - l  
3 

From equation (11) it can be seen that in the absence of cuxvature effects the wall jet 

momentum (bu;) decreases with distance due to skin friction at the wall. However for a 

wall of decreasing radius of curvature (5 < 0) it is possible for the wall jet momenturn 

to increase with distance along the wall. This will occur if 

An approximate form of equation (11) valid for large n and for Cf -+ 6 may be written 

(log2 - ') b2 dR 
4 --- 1 d  

uf ds k R 2 d S  - O  

a result which is applicable for large Reynolds number. 

Since there are two unknown quantities in equation (11) it is necessary to use a second 

relationship in order to determine b and u,,,. It is convenient to use the momentum equation 
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(7) evaluated at the poict of maximum velociw, (ie where u = Urn, &E = 0) which may be 

written 

The terms on the left hand side may be written in dimensionless form, neglecting terms 

of O(b/R)2 as follows: 

and 

Fin ally, 

db 
ds 

- -1 b/R - -  - 

Thus the left hand side of equation (12) becomes 

t / s )  [-- 1 d  ( a 4  - f (1 - - 1 6 / R )  ;i- db 
1 4 kn UT, ds 1 + kn 3 
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n b2 dR 

In the limiting case of large n this expression simplifies to 

4 1 d  d b  4 ' 2 { (l-  3k ukds ds 3k 
-b/R --(bt&) - - -+ -b2/R2- 

In order to evaluate the right hand side of equation (12) it io necessary to express 7 in 

terms of u through an eddy viscosity E based on a length scale b( 1 - tm) and a characteristic 

velocity um. It is convenient to write 

K 
= -P(I  4k2 - t m 9 6  urn g ( t )  (139 

where K is a constant to be determined experimentally. The function g(t9 is chosen such 

that g(tm) = 1 2nd also satisfies the appropriate boundary condition at t = 0. 

The shear stress takes the form 

or, substituting for u = u,f(t) and E 

Similarly, 

16) 

where I denotes a derivative with respect to (. 
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Since f(L) = g( (m) = 1 and f'(tm) = 0 the foregoing expressions evaluated at ( = ~ ; ; n  

combine to give: 

h ar K (-- + "). = b { -(1 4k2 - &)(l 
P a y  PR 

The quantity f" is evaluated from 

f = sech2 

Turning now to the function g(() which describes the variation with of the eddy 

viscosity, g( I )  is assumed to take the form: 

where the exponent rn and the constant a are determined by satisfying the condition 

that 

Substitution for E and u gives 



at = 0. 

Thus 

1 Clk rn = 1 - - and a = - 
n K 

(since 1-cm = kn) 

Thus 
€m 

and g'(sm) is evaluated as 

Thus equation 17 becomes 

C , k  ' 11 - n/2 + n2 (1 - 
l R  1 

i 1 + kn 1 + kn 

which has the form. €or n large and Cj -+ 0: 

(21) 

Substitution into equation (121, and elimination of the quantity -&$(bu;j using equa- 

tion ( l l a )  gives finally, an expression for the spreading rate 2: 

b/R+O(B/R)2 db 
d S  

(22) 

In this equation K is t o  be determined experimentally lor the flat piaie (I? + m) 

and the term involving ( b / R g )  is retained since this may be the same order as (for a 

log spiral shape, in fact ( ~ I R ? )  9 
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(a) Circular Cylinder 

In this case equation 22 reduces to a linear differential equation €or b /R  namely 

The solution to this equation may be written in the form 

b * b / R  - = K  
3 log(1 + ; b / R )  

or, neglecting terms of O(b/R)2 ,  

b/s = K (1 + 1 b / R )  
2k 

It is clear from equation 22 that the influence of small curvature (small BJR) may be 

quite significant since the quantity f . b / R  appears in the expression for the spreading 

rate. 

Comparison with Experimental Resnlts 

In order to validate the foregoing analysis a comparison is made of the spreading rate 

as given by equation (22) with available experiment4 results €or two cases, namely, the 

circular cylinder (R = constant) and the logarithmic spiral (g = const ). 

( 2 2 4  

The constant K is determined from the flat plate wall jet ( b / R  0) as K = .07, and 

equation (23a) with k = .8814 gives 

b / s  = 07(1 + 4b /R)  (n = 7) 
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b/s = .07(1 i- 3.4b/R) (n = 6) (234 

These expressions are shown in figure 4 together with the available experimental results 

of Fekete(I2), and Wilson and Goldstein(ls). In this regard the review by Launder and 

Rodi(") suggest that the data of Fekete is possibly more representative of two dimensional 

flow than that of Wilson and Goldstein. It is in fairly good agreement with the theoretical 

expression for n = 6 (the Reynolds number is in the range 4 to 13 x los). 

(b) Logarithmic Spiral 

For a logarithmic spiral R/s = constant and,equation (22) has a self similar solution 

(n = 7) [1+ 8b/R! u .07 
[1 - b/RI 

(n = 6 )  
.07[ 1 + 6.8b/R ] 

P - b/R 1 
A comparison of these curves with the experimental results of Guitton and Newman(") 

and Kamemoto(15) is made in fig. 5. Here Guitton and Newman's results are considered to 

be most representative of two dimensional flow. Equation (24) reflects the much greater 

increase of b/s with b/R for the logarithmic spiral, compared to the circular cylinder 

equation (23a), and this trend is also seen in the experimental data. 

Conclusions 

From the foregoing analysis and comparison with experimental results it is seen that 

the wall jet is influenced by three effects: 
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(a) The turbulent diffusion in the wall jet giving rise to a linear spreading rate db/ds  = 

K w .07. 

(b) A coupling between the eddy viscosity and the curvature of the wall arising from the 

term $(eu/R) in the stress gradient and yielding a contribution of 8 = KZb/R. 

(typically this contribution is O ( t b / R )  for Reynolds numbers Iypical of laboratory 

experiments), and 

(c) A curvature-induced streamwise pressure gradient giving rise to a contribution of 

O ( b / R ) 2 g .  When $ < 0 this effect causes the jet momentum (bu:) to increase 

in the streamwise direction and help confine the jet to a thin iayer as it proceeds along 

the surface. This is an inertial term, largely indeperdent of Reynolds number, and is 

an essential feature of Coanda turning of the flow. 

These influences are additive and give an approximate relationship between the spread- 

ing rate %, the half width of the jet and the surface radius of curvature R, of the form 

* dR - = K o + K I z + K , ( ~ )  db b 
ds  

which can be integrated to give b(s) when the wall shape R(s) is known. 

The use of this result for the circular cylinder (R = const) and for logarithmic spiral 

surfaces (b/R = const) shows good ageement with the previcus experimental results of 

several authors. This provides some confidence that a simple algebraic eddy viscosity 

model, used in conjunction with the apprcpriate expression for the shear stress (including 

curvature terms), is sufficient to describe the primary features of the wall jet. 
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Figure 1. Gtometry of two dimensional wall-jet. 
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